EconPapers    
Economics at your fingertips  
 

Big data analytics business value and firm performance: linking with environmental context

Claudio Vitari and Elisabetta Raguseo

International Journal of Production Research, 2020, vol. 58, issue 18, 5456-5476

Abstract: Previous studies, grounded on the resource based view, have already explored the relationship between the business value that Big Data Analytics (BDA) can bring to firm performance. However, the role played by the environmental characteristics in which companies operate has not been investigated in the literature. We inform the theory, in that direction, via the integration of the contingency theory to the resource based view theory of the firm. This original and integrative model examines the moderating influence of environmental features on the relationship between BDA business value and firm performance. The combination of survey data and secondary financial data on a representative sample of medium and large companies makes possible the statistical validation of our research model. The results offer evidence that BDA business value leads to higher firm performance, namely financial performance, market performance and customer satisfaction. More original is the demonstration that this relationship is stronger in munificent environments, while the dynamism of the environment does not have any moderating effect on the performance of BDA solutions. It means that managers working for firms in markets with a growing demand are in the best position to profit from BDA.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1660822 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:18:p:5456-5476

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2019.1660822

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:58:y:2020:i:18:p:5456-5476