Robust optimisation of sustainable food grain transportation with uncertain supply and intentional disruptions
Lohithaksha M. Maiyar and
Jitesh J. Thakkar
International Journal of Production Research, 2020, vol. 58, issue 18, 5651-5675
Abstract:
The proliferating need for sustainability intervention in food grain transportation planning is anchoring the attention of researchers in the interests of stakeholders and environment at large. Uncertainty associated with food grain supply further intensifies the problem steering the need for designing robust, cost-efficient and sustainable models. In line with this, this paper aims to develop a robust and sustainable intermodal transportation model to facilitate single type of food grain commodity shipments while considering procurement uncertainty, greenhouse gas emissions, and intentional hub disruption. The problem is designed as a mixed integer non-linear robust optimisation model on a hub and spoke network for evaluating near optimal shipment quantity, route selection and hub location decisions. The robust optimisation approach considers minimisation of total relative regret associated with total cost subject to several real-time constraints. A version of Particle Swarm Optimisation with Differential Evolution is proposed to tackle the resulting NP-hard problem. The model is tested with two other state-of the art meta-heuristics for small, medium, and large datasets subject to different procurement scenarios inspired from real time food grain operations in Indian context. Finally, the solution is evaluated with respect to total cost, model and solution robustness for all instances.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1656836 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:18:p:5651-5675
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1656836
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().