Technical attribute prioritisation in QFD based on cloud model and grey relational analysis
Xu Wang,
Hong Fang and
Wenyan Song
International Journal of Production Research, 2020, vol. 58, issue 19, 5751-5768
Abstract:
Promptly development of new products can be achieved through quality function deployment (QFD) process, which is critical to companies’ survival. Since the multi-criteria decision-making problem involved in QFD, a novel method integrating cloud model and grey relational analysis is put forward in this paper. Taking into account the subjectivity and ambiguity in linguistic evaluations, some scholars utilise fuzzy theory, rough theory, interval-valued fuzzy-rough sets and MCDM methods to improve traditional QFD. However, much priori information requirements, inability to handle subjectivity and randomness, and lack of mechanism to overcome small sample size problem are some inevitable drawbacks in these methods. To solve these deficiencies, a hybrid methodology is proposed in this paper, integrating the fortes of cloud model in processing ambiguity and randomness, and the merits of grey relational analysis in overcoming small sample size error as well as revealing the inner correlations. The comparative analysis of different approaches as well as the sensitivity analysis of criteria weights is implemented to prove the stability of the novel method. The results obtained in this paper shows that the proposed method can be a practical tool for improving the efficiency and accuracy of traditional QFD in reality management.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1657246 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:19:p:5751-5768
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1657246
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().