EconPapers    
Economics at your fingertips  
 

Quantum-inspired ant colony optimisation algorithm for a two-stage permutation flow shop with batch processing machines

Zhen Chen, Xu Zheng, Shengchao Zhou, Chuang Liu and Huaping Chen

International Journal of Production Research, 2020, vol. 58, issue 19, 5945-5963

Abstract: This paper studied two-stage permutation flow shop problems with batch processing machines, considering different job sizes and arbitrary arrival times, with the optimisation objective of minimising the makespan. The quantum-inspired ant colony optimisation (QIACO) algorithm was proposed to solve the problem. In the QIACO algorithm, the ants are divided into two groups: one group selects the largest job in terms of job size as the initial job for each batch and the other group selects the smallest job as the initial job for each batch. Each group of ants has its own pheromone matrix. In the computational experiment, our novel algorithm was compared with the hybrid discrete differential evolution (HDDE) algorithm and the batch-based hybrid ant colony optimisation (BHACO) algorithm. Although the HDDE algorithm has a shorter run time, the quality of the solution for large-scale jobs is not good, while the BHACO algorithm always obtains a better solution but requires a longer run time. The computational results show that the QIACO algorithm embedded in the quantum information has advantages in terms of both solution quality and running time.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1661535 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:19:p:5945-5963

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2019.1661535

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:58:y:2020:i:19:p:5945-5963