Cloud manufacturing service composition and optimal selection with sustainability considerations: a multi-objective integer bi-level multi-follower programming approach
Yanxia Wu,
Guozhu Jia and
Yang Cheng
International Journal of Production Research, 2020, vol. 58, issue 19, 6024-6042
Abstract:
The process of service composition and optimal selection (SCOS) is an important issue in cloud manufacturing (CMfg). However, the current studies on CMfg and SCOS have generally focused on optimising the allocation of resources against quality of service (QoS), in terms of e.g. cost, quality, and time. They have seldom taken the perspective of sustainability into discussion, although sustainability is indispensable in the CMfg environment. Addressing this gap, we aim to (1) propose a comprehensive method to assess the sustainability of cloud manufacturing (SoM) in terms of the economic, environmental, and social aspects; (2) establish a multi-objective integer bi-level multi-follower programming (MOIBMFP) model to simultaneously maximise SoM and QoS from the perspectives of both platform operator and multiple service demanders; and (3) design a hybrid particle swarm optimisation algorithm to solve the proposed MOIBMFP model. The experimental results show that the proposed algorithm is more feasible and effective than the typical multi-objective particle swarm optimisation algorithm when solving the proposed model. In other words, the proposed model and algorithm suggest better alternatives to meet the needs of the platform operator and service demanders in the CMfg environment.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1665203 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:19:p:6024-6042
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1665203
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().