Soft constraint handling for a real-world multiobjective energy distribution problem
Yanyan Zhang,
Gary G. Yen and
Lixin Tang
International Journal of Production Research, 2020, vol. 58, issue 19, 6061-6077
Abstract:
Real-world optimisation problems usually involve some conflicting objectives and a number of constraints. In such cases, finding a feasible, Pareto-optimal solution poses a demanding challenge. In reality, constraints bear different importance levels to these conflicting objectives. If some constraints are relaxed within an acceptable degree, quality infeasible solutions could be found on the boundary from the infeasible side of the searching region. This paper formulates an energy distribution problem arising from a real-world iron and steel production as a multiobjective optimisation problem. During the course of the optimisation search, this paper attempts to handle certain constraints in a soft manner to find solutions with good balance among objective and constraints violation. Based on the analysis of constraints from the real-world perspective, different tolerance values are defined. The proposed constraint violation degree-based soft handling approach is incorporated into the advanced version of non-dominated sorting genetic algorithm framework, as a case study, to examine the efficiency of the proposed soft constraint handling approach for a real-world energy distribution problem. The proposed approach is also implemented in different ways of constraint handling and tested on some benchmark functions to further demonstrate the performance of soft constraint handling for multiobjective optimisation problems.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1667039 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:19:p:6061-6077
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1667039
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().