Big data-driven supply chain performance measurement system: a review and framework for implementation
Sachin S. Kamble and
Angappa Gunasekaran
International Journal of Production Research, 2020, vol. 58, issue 1, 65-86
Abstract:
Performance measures and metrics (PMM) is identified to be an essential aspect of managing diverse supply chains. The PMM improves the firm’s performance by providing open and transparent communication between the various stakeholders of an organisation. The literature suggests that big data analytics has a positive impact on the supply chain and firm performance. Presently, the literature lack studies that recognise the PMM relevant to big data-driven supply chain (BDDSC). The present study is based on a comprehensive review of 66 papers published with the primary objective to identify the various PMMs used to evaluate the BDDSC. The findings suggest that the PMMs applicable to BDDSC can be classified into two non-mutually exclusive categories. The first category represents 24 performance measures used to evaluate the performance of the big data analytics capability and the second category represents 130 measures used for assessing the performance of BDDSC processes. The study also reports the emergence of new performance measures based on increasing use of predictive and social analytics in BDDSC. Based on the results of the study a framework on BDDSC performance measurement system is proposed which will guide the managers to have a robust performance measurement system in their organisation.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1630770 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:1:p:65-86
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1630770
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().