Reducing waste in manufacturing operations: bi-objective scheduling on a single-machine with coupled-tasks
Corentin Le Hesran,
Aayush Agarwal,
Anne-Laure Ladier,
Valérie Botta-Genoulaz and
Valérie Laforest
International Journal of Production Research, 2020, vol. 58, issue 23, 7130-7148
Abstract:
This study addresses a scheduling problem involving a single-machine with coupled-tasks and bi-objective optimisation considering simultaneously inventory and environmental waste. A Mixed Integer Linear Program representing the problem is first developed. Subsequently, a Genetic Algorithm (GA) is presented, followed by numerical experiments on multiple instances. Pareto fronts are determined using the ϵ-constraint and weighted sum methods, and a trade-off point is selected according to a distance criterion. Numerical experiments on both small and large instances show near-optimal results for small instances, and considerably reduced computing times for large ones when using the GA. The results show that a compromise can be found, with a decrease in setup-related waste up to 36% for an increase of inventory of 12%. This will help decision-makers to better consider the environmental aspect when designing schedules, as well as reduce their production environmental impact and waste-management costs.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1693653 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:23:p:7130-7148
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1693653
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().