The collaborative multi-level lot-sizing problem with cost synergies
Margaretha Gansterer and
Richard F. Hartl
International Journal of Production Research, 2020, vol. 58, issue 2, 332-349
Abstract:
Collaborative operations planning is a key element of modern supply chains. We introduce the collaborative multi-level lot-sizing problem with cost synergies. This arises if producers can realise reductions of their costs by providing more than one product in a specific time horizon. Since producers are typically not willing to reveal critical information, we propose a decentralised mechanism, where producers do not have to reveal their individual items costs. Additionally, a Genetic Algorithms-based centralised approach is developed, which we use for benchmarking. Our study shows that this approach comes very close to the a central plan, while in the decentralised one no critical information has to be shared. We compare the results to a myopic upstream planning approach, and show that these results are almost 12% worse than the centralised ones. All solution approaches are assessed on available test instances for problems without cost synergies. For the biggest available instances, the proposed centralised mechanism improves the best known solutions on average by 10.8%. The proposed decentralised mechanism can be applied to other problem classes, where collaborative decision makers aim for good plans under incomplete information.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1584415 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:2:p:332-349
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1584415
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().