Formulations and solution algorithms for dynamic assembly routing problem
H. Murat Afsar and
Faicel Hnaien
International Journal of Production Research, 2020, vol. 58, issue 3, 671-688
Abstract:
We study a dynamic version of the assembly routing problem. The assembly lot sizing section deals with decisions concerning the production phase, whereas the routing section organises the collection of raw materials necessary for the production. Traditionally, these two problems are treated separately, and more specifically, in a hierarchical way. We propose three linear programming models: a non-vehicle index model, a two-commodity flow formulation and a logic-based benders decomposition. We develop aggregated rounded capacity constraints for non-vehicle index model and separated them dynamically during the Branch & Cut procedure. Logic-based benders decomposition algorithm solves the Dynamic Assembly Routing Problem iteratively and obtains a feasible solution at each iteration. The numerical tests show that, the two first models are particularly effective at finding the optimal solutions in a reasonable amount of time on instances with up to 50 components and 3 periods.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1588481 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:3:p:671-688
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1588481
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().