EconPapers    
Economics at your fingertips  
 

Big data in lean six sigma: a review and further research directions

Shivam Gupta, Sachin Modgil and Angappa Gunasekaran

International Journal of Production Research, 2020, vol. 58, issue 3, 947-969

Abstract: Manufacturing and service organisations improve their processes on a continuous basis to have better operational performance. They use lean six sigma (LSS) projects for process improvement. Therefore, this study aims to investigate the existing literature in LSS and the application of big data analytics (BDA) to have more confident and predictable decisions in each phase of LSS. Fifty-two articles have been identified after a careful and vigilant screening of closely related themes. Future research directions in the big data and LSS have been highlighted on the basis of organisational theories. Review presents an investigation framework consisting of BDA techniques applicable to each phase of LSS in all the dimensions such as volume, variety, velocity and veracity of big data. Review highlights the concerns of big data in LSS such as system design and integration, system performance, security and reliability of data, sustaining the control and conducting the experiments, distributed material and information flow. The review unveils the application of 8 modern organisational theories to big data in LSS with 21 key aspects of related theories and 19 distinct research gaps as opportunities for future research.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1598599 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:3:p:947-969

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2019.1598599

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:58:y:2020:i:3:p:947-969