A study on investments in the big data-driven supply chain, performance measures and organisational performance in Indian retail 4.0 context
Shradha A. Gawankar,
Angappa Gunasekaran and
Sachin Kamble
International Journal of Production Research, 2020, vol. 58, issue 5, 1574-1593
Abstract:
The use of digital technologies such as ‘internet of things’ and ‘big data analytics’ have transformed the traditional retail supply chains into data-driven retail supply chains referred to as ‘Retail 4.0.’ These big data-driven retail supply chains have the advantage of providing superior products and services and enhance the customers shopping experience. The retailing industry in India is highly competitive and eager to transform into the environment of retail 4.0. The literature on big data in the supply chain has mainly focused on the applications in manufacturing industries and therefore needs to be further investigated on how the big data-driven retail supply chains influence the supply chain performance. Therefore, this study investigates how the retailing 4.0 context in India is influencing the existing supply chain performance measures and what effect it has on the organisational performance. The findings of the study provide valuable insights for retail supply chain practitioners on planning BDA investments. Based on a survey of 380 respondents selected from retail organisations in India, this study uses governance structure as the moderating variable. Implications for managers and future research possibilities are presented.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1668070 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:5:p:1574-1593
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1668070
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().