Improved evolutionary algorithm for parallel batch processing machine scheduling in additive manufacturing
Jianming Zhang,
Xifan Yao and
Yun Li
International Journal of Production Research, 2020, vol. 58, issue 8, 2263-2282
Abstract:
With the increasing prosperity of additive manufacturing, the 3D-printing shop scheduling problem has presented growing importance. The scheduling of such a shop is imperative for saving time and cost, but the problem is hard to solve, especially for simultaneous multi-part assignment and placement. This paper develops an improved evolutionary algorithm for application to additive manufacturing, by combining a genetic algorithm with a heuristic placement strategy to take into account the allocation and placement of parts integrally. The algorithm is designed also to enhance the optimisation efficiency by introducing an initialisation method based on the characteristics of the 3D printing process through the development of corresponding time calculation model. Experiments show that the developed algorithm can find better solutions compared with state-of-the-art algorithms such as simple genetic algorithm, particle swarm optimisation and heuristic algorithms.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1617447 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:8:p:2263-2282
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1617447
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().