Hybrid simulated annealing and reduced variable neighbourhood search for an aircraft scheduling and parking problem
Shuang Zheng,
Zhen Yang,
Zhengwen He,
Nengmin Wang,
Chengbin Chu and
Haiyang Yu
International Journal of Production Research, 2020, vol. 58, issue 9, 2626-2646
Abstract:
Aircraft stands and runways at airports are critical airport resources for aircraft scheduling and parking. Making use of limited apron and runway resources to improve airport efficiency is becoming increasingly important. In this paper, we study a realistic Aircraft Scheduling and Parking Problem (ASPP) with the goal of simultaneously determining the takeoff and landing time of each aircraft with consideration for wake vortex effect constraints and parking positions in the limited parking apron at a target airport. The objective of the ASPP is to minimise the total service time for aircraft. We developed a mixed-integer linear programme formulation for the ASPP. A novel improved bottom-left/right strategy is applied to construct solutions and a Hybrid Simulated Annealing and Reduced Variable Neighborhood Search (HSARVNS) is proposed to identify near-optimal solutions. Numerical experiments on randomly generated ASPP instances and on a large set of benchmarks for a reduced version of the ASPP (i.e. the classical Two-Dimensional Strip-Packing Problem (2D-SPP)) demonstrate the effectiveness and efficiency of the proposed approach. For the ASPP, HSARVNS can find optimal solutions for small instances in a fraction of a second and can find high-quality solutions for instances with up to 250 aircraft within a reasonable timeframe. For the 2D-SPP, the HSARVNS can find optimal solutions for 32 of 38 tested benchmarks within 90 s on average.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1629663 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:9:p:2626-2646
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1629663
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().