Multi-product continuous plant scheduling: combination of decomposition, genetic algorithm, and constructive heuristic
Pavel Borisovsky,
Anton Eremeev and
Josef Kallrath
International Journal of Production Research, 2020, vol. 58, issue 9, 2677-2695
Abstract:
We propose a polylithic method for medium-term scheduling of a large-scale industrial plant operating in a continuous mode. The method combines a decomposition approach, a genetic algorithm (GA) and a constructive MILP-based heuristic. In the decomposition, decisions are made at two levels, using the rolling horizon approach. At the upper level, a reduced set of products and the time period is chosen to be considered in the lower level. At the lower level, a short-term scheduling MILP-model with event-based representation is used. A heuristic solution to the lower level problem is found using a constructive Moving Window heuristic guided by a genetic algorithm. The GA is applied for finding efficient utilisation of critical units in the lower level problem. For solving the one unit scheduling problem, a parallel dynamic programming algorithm is proposed. Implementation of the dynamic programming algorithm for a graphics processing unit (GPU) is incorporated in the GA for improving its performance. The experimental study of the proposed method on a real case of a large-scale plant shows a significant improvement of the solution quality and the solving time comparing to the pure decomposition algorithm proposed in the earlier study, and confirmed suitability of the proposed approach for the real-life production scheduling. In particular, the reduction of the number of changeovers and their duration in the obtained solution as well as the CPU time of solving the problem was about 60% using the new approach.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1630764 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:9:p:2677-2695
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1630764
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().