EconPapers    
Economics at your fingertips  
 

Large neighbourhood search based on mixed integer programming and ant colony optimisation for car sequencing

Dhananjay Thiruvady, Kerri Morgan, Amiza Amir and Andreas T. Ernst

International Journal of Production Research, 2020, vol. 58, issue 9, 2696-2711

Abstract: We investigate the problem of scheduling a sequence of cars to be placed on an assembly line. Stations, along the assembly line install options (e.g. air conditioning), but have limited capacities, and hence cars requiring the same options need to be distributed far enough apart. The desired separation is not always feasible, leading to an optimisation problem that minimises the violation of the ideal separation requirements. In order to solve the problem, we use a large neighbourhood search (LNS) based on mixed integer programming (MIP). The search is implemented as a sliding window, by selecting overlapping subsequences of manageable sizes, which can be solved efficiently. Our experiments show that, with LNS, substantial improvements in solution quality can be found.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1630765 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:9:p:2696-2711

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2019.1630765

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:58:y:2020:i:9:p:2696-2711