Bi-objective mathematical model and improved algorithm for optimisation of welding shop scheduling problem
Yunqing Rao,
Ronghua Meng,
Jing Zha and
Xiaofei Xu
International Journal of Production Research, 2020, vol. 58, issue 9, 2767-2783
Abstract:
This paper addresses a bi-objective welding shop scheduling problem (BWSSP) aiming to minimise the total tardiness and the machine interaction effect. The BWSSP is a special flow-shop scheduling problem (FSP) which is characterised by the fact that more than one machine can process on one job at a certain stage. This study analyses the operation of a structural metal manufacturing plant, and includes various aspects such as job sequence, machine-number-dependent processing time, lifting up time, lifting down time and different delivery time. A novel mixed-integer programming model (MIPM) is established, which can be used to minimise the delayed delivery time and the total machine interaction effect. One machine interaction effect formula is given in this paper. In order to solve this BWSSP, an appropriate non-dominated sorting Genetic Algorithm III (NSGAIII), embedded with a restarted strategy (RNSGAIII), is proposed. The restarted strategy, which can increase the diversity of the solutions, will be triggered with a restart probability. Following the iterative process, an effective strategy is applied to reduce the interaction effect penalty, on the premise that the makespan will remain unchanged. Total five algorithms, namely NSGAII, NSGAIII, harmony search algorithm (HSA), strength Pareto evolutionary algorithm (SPEA2), and RNSGAIII are utilised to solve this engineering problem. Numerical simulations show that the improved RNSGAIII outperforms the other methods, and the Pareto solution distribution and diversity, in particular, are significantly improved.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1656837 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:9:p:2767-2783
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1656837
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().