Fuzzy belief propagation in constrained Bayesian networks with application to maintenance decisions
Ke Wang,
Yan Yang,
Jian Zhou and
Mark Goh
International Journal of Production Research, 2020, vol. 58, issue 9, 2885-2903
Abstract:
Bayesian networks have been widely applied to domains such as medical diagnosis, fault analysis, and preventative maintenance. In some applications, because of insufficient data and the complexity of the system, fuzzy parameters and additional constraints derived from expert knowledge can be used to enhance the Bayesian reasoning process. However, very few methods are capable of handling the belief propagation in constrained fuzzy Bayesian networks (CFBNs). This paper therefore develops an improved approach which addresses the inference problem through a max-min programming model. The proposed approach yields more reasonable inference results and with less computational effort. By integrating the probabilistic inference drawn from diverse sources of information with decision analysis considering a decision-maker's risk preference, a CFBN-based decision framework is presented for seeking optimal maintenance decisions in a risk-based environment. The effectiveness of the proposed framework is validated based on an application to a gas compressor maintenance decision problem.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1715503 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:9:p:2885-2903
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2020.1715503
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().