A multi-objective particle swarm optimisation for integrated configuration design and scheduling in reconfigurable manufacturing system
Jianping Dou,
Jun Li,
Dan Xia and
Xia Zhao
International Journal of Production Research, 2021, vol. 59, issue 13, 3975-3995
Abstract:
To provide accurate capacity and functionality needed for each demand period (DP), a reconfigurable manufacturing system (RMS) is able to change its configuration with time. For the RMS with multi-part flow line configuration that concurrently produces multiple parts within the same family, the cost and delivery time are dependent on its configuration and relating scheduling for any DP. So far, the study on solution method for the integrated optimisation problem of configuration design and scheduling for RMS is scarce. To efficiently find solutions with tradeoffs between total cost and tardiness, a multi-objective particle swarm optimisation (MoPSO) based on crowding distance and external Pareto solution archive is presented to solve practical-sized problems. The devised encoding and decoding methods along with the particle updating mechanism of MoPSO ensure any particle a feasible solution. The comparison between MoPSO and ε-constraint method versus small-sized cases illustrates the effectiveness of MoPSO. The comparative results between MoPSO and nondominated sorting genetic algorithm II (NSGA-II) against eight problems show that the MoPSO outperforms the NSGA-II in both solution quality and computation efficiency for the integrated optimisation problem.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1756507 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:13:p:3975-3995
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2020.1756507
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().