Minimising makespan in job-shops with deterministic machine availability constraints
Shih-Wei Lin and
Kuo-Ching Ying
International Journal of Production Research, 2021, vol. 59, issue 14, 4403-4415
Abstract:
This paper proposes an effective and efficient multi-temperature simulated annealing (MTSA) algorithm to minimise the makespan of a job-shop under the constraint that machines are not continuously available for processing during the whole scheduling horizon. The proposed MTSA algorithm uses an embedded multi-temperature mechanism to vary the thermal transition probabilities of the simulated annealing algorithm. This mechanism can help prevent the algorithm from becoming trapped in a local minimum and ensures its movement towards a broad region of the search space containing optimal solutions. An effective and robust lower bound is developed for the problem to evaluate the quality of solutions. Extensive computational results show that the proposed MTSA algorithm significantly outperforms the state-of-the-art meta-heuristic algorithms reported in the literature. The proposed algorithm and lower bound can assist further research in the scheduling research field as it is both effective and efficient in handling job-shop scheduling problems with machine availability constraints.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1764125 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:14:p:4403-4415
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2020.1764125
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().