EconPapers    
Economics at your fingertips  
 

Bayesian hierarchical modelling for process optimisation

Linhan Ouyang, Chanseok Park, Yan Ma, Yizhong Ma and Min Wang

International Journal of Production Research, 2021, vol. 59, issue 15, 4649-4669

Abstract: Many industrial process optimisation methods rely on empirical models that relate output responses to a set of design variables. One of the most crucial problems in process optimisation is how to efficiently implement model selection and model estimation. This paper presents a Bayesian hierarchical modelling approach to process optimisation based on the seemingly unrelated regression (SUR) models. This approach can estimate a set of predictors to be included in a model based on a Bayesian hierarchical procedure (i.e. model selection) and then give model prediction based on a Bayesian SUR model (i.e. model estimation). Meanwhile, a two-stage optimisation strategy considering practitioners’ preference information is proposed in process optimisation, which initially finds a set of non-dominated input settings and then determines the best one based on the similarity to an ideal solution method. The performance and effectiveness of the proposed method are illustrated with both simulation studies and a case study. The comparison results demonstrate that the proposed method can be a good alternative to existing process optimisation methods.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1769873 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:15:p:4649-4669

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2020.1769873

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:59:y:2021:i:15:p:4649-4669