A deformable CNN-DLSTM based transfer learning method for fault diagnosis of rolling bearing under multiple working conditions
Zheng Wang,
Qingxiu Liu,
Hansi Chen and
Xuening Chu
International Journal of Production Research, 2021, vol. 59, issue 16, 4811-4825
Abstract:
Machine learning methods are widely used for rolling bearing fault diagnosis. Most of them are based on a basic assumption that training and testing data are adequate and follow the same distribution. However, for bearings working under multiple working conditions, dynamic changes are inevitable and labelled vibration data are usually insufficient. To deal with the issues, a new fault diagnosis method using deformable convolutional neural network (CNN), deep long short-term memory (DLSTM) and transfer learning strategies is designed. Specifically, a model is constructed by integrating deformable CNN, DLSTM and dense layers. Among them, deformable CNN enhances the ability of standard CNNs for local feature extraction using fixed geometric structures. DLSTM further encodes the sequential information contained in the output of deformable CNN. Dense layers are applied to capture high-level features then classify the data samples as each fault type. The model is firstly pre-trained using data samples under one working condition. Then, transfer learning strategies are implemented to fine-tune the pre-trained model utilising very few samples of another working condition, enabling it to identify fault types of bearing under new condition. Experiments are conducted and results show that the presented model yields higher than comparative performance compared with state-of-the-art methods.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1808261 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:16:p:4811-4825
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2020.1808261
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().