Planning approaches for stochastic capacitated lot-sizing with service level constraints
Dariush Tavaghof-Gigloo and
Stefan Minner
International Journal of Production Research, 2021, vol. 59, issue 17, 5087-5107
Abstract:
We investigate a stochastic capacitated lot-sizing problem whose optimal solution requires the integration of dynamic safety stock planning into lot-sizing. Then, we introduce an integrated mixed-integer linear program with service-level constraints. The integrated model endogenously sets dynamic safety stocks over replenishment cycles of different lengths determined by the model. Since there is limited capacity, soft service-level constraints are introduced to guarantee a feasible solution. In the experimental study, we compare the performance of the integrated model to the stochastic dynamic program and the widely-used sequential approach. If available capacity increases, the integrated model closes the gap to the lower bound approximated by using a stochastic dynamic program. If capacity is limited, the integrated model outperforms the sequential approach because it yields identical service levels with lower inventories. However, in the case of sufficient flexibility (capacity), we identify a major shortcoming of the integrated models: They can generate excessive safety stock if the re-planning opportunities under rolling horizon planning are ignored. To overcome this problem, we extend the integrated model to account for those re-planning opportunities.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1773003 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:17:p:5087-5107
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2020.1773003
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().