EconPapers    
Economics at your fingertips  
 

A many-objective memetic algorithm for correlation-aware service composition in cloud manufacturing

Fei Wang, Yuanjun Laili and Lin Zhang

International Journal of Production Research, 2021, vol. 59, issue 17, 5179-5197

Abstract: Service composition is a core issue of cloud manufacturing (CMfg) to integrate distributed manufacturing services for customised manufacturing tasks. Existing studies focus on the quality of service (QoS) in composition by assuming that each service is independent with each other. However, the correlation between services determines whether a composition is feasible in practice and is a primary factor of its QoS. This paper considers two typical correlations, composability-oriented correlation and quality-oriented correlation. The composability-oriented correlation is modelled as a group of constraints to decide whether a solution is feasible. The influence of the quality-oriented correlation between two services on the overall QoS of a composition is quantified by a discount percentage based on their correlation degrees. A mathematical model of correlation-aware service composition is then established. To solve this problem, a many-objective memetic algorithm termed HypE-C (Hypervolume Estimation Algorithm for Multiobjective Optimisation involving Correlation) is designed. Three correlation-based local search strategies are established in the frame of HypE (Hypervolume Estimation Algorithm for Multiobjective Optimisation) to achieve better trade-off among multiple conflicting QoS criteria. Experiments demonstrate the effectiveness of the proposed algorithm HypE-C compared with five many-objective algorithms on eliminating infeasible search space and providing high QoS service composition solutions.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1774678 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:17:p:5179-5197

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2020.1774678

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:59:y:2021:i:17:p:5179-5197