Robust scheduling for a two-stage assembly shop with scenario-dependent processing times
Chin-Chia Wu,
Jatinder N. D. Gupta,
Shuenn-Ren Cheng,
Bertrand M. T. Lin,
Siu-Hung Yip and
Win-Chin Lin
International Journal of Production Research, 2021, vol. 59, issue 17, 5372-5387
Abstract:
Recently, finding solutions to assembly flowshop scheduling problems is a topic of extensive discussion in research communities. While existing research assumes that job processing times are constant numbers, in several practical situations, due to several external factors like machine breakdowns, working environment changes, worker performance instabilities, and tool quality variations and unavailability, job processing times may vary. In this study, therefore, we address a two-stage assembly flowshop scheduling problem with two scenario-dependent jobs processing times to minimise the maximum makepsan among both scenarios (called robust makespan) In view of the NP-hard nature, we first derive a dominance property and a lower bound to propose a branch-and-bound algorithm to find a permutation schedule with minimum makespan. Following that, we use Johnson’s rule to propose eight polynomial heuristics for finding near-optimal solutions. Furthermore, we propose four cloud theory-based simulated annealing (CSA) hyper-heuristic algorithms incorporating seven low level heuristics to solve a robust two-stage assembly flowshop problem with scenario-dependent processing times. Finally, we empirically evaluate the effectiveness of all the proposed algorithms in minimising the robust makespan.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1778208 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:17:p:5372-5387
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2020.1778208
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().