Travel time model for a tower-based automated parking system
Jing Zhang,
Zi-You Gao,
Yu-Gang Yu and
Tao Wang
International Journal of Production Research, 2021, vol. 59, issue 18, 5422-5437
Abstract:
This paper aims to investigate a tower-based automated parking system, with the appearance of a cylinder. The tower crane can simultaneously implement two types of movement: (1) ascending/descending in the vertical direction and (2) rotating counter clockwise/clockwise. The shuttle can move along the diameter to the opposite parking slot. Using the characteristics of the device, we first deduce a travel time model of the system. Then, we obtain the optimal system sizes by solving the model. We further discuss minimising the maximum travel time and the dwelling point of the crane. Finally, sensitivity analyses are also conducted, in order to demonstrate the optimal value of the proposed system. We have varied the height (in time unit) for a fixed area of the system and found that, when the system configuration deviates from the optimal value, the travel time of the parking system increases greatly. We also investigate how and to what degree the different ratio of the parameters affects the expected travel time of a tower-based system. In addition, we investigate the influence of different system configurations (in the light of travel time and footprint) on system performance. The corresponding analysis results can provide the designer the required system size.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1780334 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:18:p:5422-5437
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2020.1780334
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().