Multi-objective optimisation for energy-aware flexible job-shop scheduling problem with assembly operations
Weibo Ren,
Jingqian Wen,
Yan Yan,
Yaoguang Hu,
Yu Guan and
Jinliang Li
International Journal of Production Research, 2021, vol. 59, issue 23, 7216-7231
Abstract:
There is a lack of studies on joint optimisation of flexible job-shop scheduling problem (FJSP) considering energy consumption and production efficiency in the machining-assembly system. Thus, in this paper, we propose a methodology for multi-objective optimisation of energy-aware flexible job-shop scheduling during machining and assembly operations. First, a mixed integrated mathematical model is developed to improve production efficiency and minimise energy consumption. Then, a novel heuristic algorithm integrated particle swarm optimisation (PSO) and genetic algorithm (GA) is developed to address the established multi-objective problem. Moreover, numerical examples are carried out to verify the validity and performance of the solving methods in achieving energy awareness in the manufacturing system. Computational results are presented to demonstrate the advantage of solving the problem compared with the exact method and common heuristic algorithms, and the trade-off between production efficiency and energy efficiency is analysed to make the final decision for managers.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1836421 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:23:p:7216-7231
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2020.1836421
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().