EconPapers    
Economics at your fingertips  
 

Predicting the printed circuit board cycle time of surface-mount-technology production lines using a symbiotic organism search-based support vector regression ensemble

Debiao Li, Siping Chen, Raymond Chiong, Liting Wang and Sandeep Dhakal

International Journal of Production Research, 2021, vol. 59, issue 23, 7246-7265

Abstract: This paper presents a symbiotic organism search (SOS)-based support vector regression (SVR) ensemble for predicting the printed circuit board (PCB) cycle time of surface-mount-technology (SMT) production lines. Being able to predict the PCB cycle time accurately is essential for optimising the SMT production schedule. Although a machine simulator can be reliably used for single-type PCB production, it is time-consuming and often inaccurate for the simulator to be applied for highly mixed orders in multiple flexible SMT production lines. Due to the dynamic changes in both PCB orders and SMT production lines, there is a diverse set of samples, but the size of similar samples is relatively small. An SVR model is therefore used to estimate the PCB cycle time, and the SOS algorithm is employed to optimise the SVR parameters. We assume that uncertainties during the assembly process can be captured by the characteristics of PCB and SMT lines, which are utilised as features to train the SVR model. To enhance the performance of the prediction accuracy, an SOS-SVR ensemble is proposed. Experiments based on datasets collected from a leading global electronics manufacturer confirm the efficiency of the proposed approach compared to industrial solutions currently in place and other machine learning methods.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1837407 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:23:p:7246-7265

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2020.1837407

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:59:y:2021:i:23:p:7246-7265