An examination of the generative mechanisms of value in big data-enabled supply chain management research
Royston Meriton,
Rajinder Bhandal,
Gary Graham and
Anthony Brown
International Journal of Production Research, 2021, vol. 59, issue 23, 7283-7310
Abstract:
Big data technologies (BDT) are the latest instalments in a long line of technological disruptions credited with advancing the field of supply chain management (SCM) from a purely clerical function to a strategic necessity. Yet, despite the wave of optimism about the utility of BDT in SCM, the origins of value in a BDT-enabled supply chain are not well understood. This study examines the generative mechanisms of value creation in such a supply chain by a two-pronged approach. First, we interrogate the theoretical raisons d’être of BDT in SCM. Second, we examine the evidence that support the value-added potential of BDT in SCM informed by extant empirical and quantitative studies (EQS). Taken together, our analyses reveal three key findings. First, in extending the dynamic capabilities perspective, we deduced that micro-founded rather than macro-founded studies tend to be more instructive to practice. Second, we discovered that the generative mechanisms of value in a BDT-enabled supply chain operate at the level of supply chain processes. And thirdly, we found that resilience and agility are the most important dynamic capabilities that have emerged from current BDT-enabled SCM research. Insights for policy, practice, theory, and future research are discussed.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1832273 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:23:p:7283-7310
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2020.1832273
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().