EconPapers    
Economics at your fingertips  
 

Intermittent demand forecasting for spare parts in the heavy-duty vehicle industry: a support vector machine model

Peng Jiang, Yibin Huang and Xiao Liu

International Journal of Production Research, 2021, vol. 59, issue 24, 7423-7440

Abstract: Intermittent demand occurs commonly for spare parts in the heavy-duty vehicle industry. Demand uncertainty and intermittency pose challenges to demand forecasting by conventional models. Support vector machine (SVM) models have been observed to yield competitive accuracy with existing models. However, there are still limitations for basic SVM models. First, the time-consuming computation does not bring a statistically significant accuracy improvement. Second, the forecasting-based inventory performance has not been sufficiently explored. Third, scarce explanations of model robustness are offered for demand forecasting. We build an adaptive univariate SVM (AUSVM) model to forecast intermittent demand. Its effectiveness, compared to 12 existing models and an improved neural-network, is demonstrated by real-world data from a heavy-duty vehicle spare-part company. AUSVM has an apparent advantage in computation time over basic SVM and neural networks. The computational results of the heavy-duty vehicle case indicate that, compared to well-known parametric models, AUSVM achieves a statistically significant accuracy improvement and better inventory performance for the group of non-smooth demand series. Discussions are presented on why AUSVM works for demand forecasting and inventory control of heavy-duty vehicle spare parts. Several insights are revealed for practitioners in the heavy-duty vehicle industry.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1842936 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:24:p:7423-7440

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2020.1842936

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:59:y:2021:i:24:p:7423-7440