Integrated locating in-house logistics areas and transport vehicles selection problem in assembly lines
Amir Nourmohammadi,
Hamidreza Eskandari,
Masood Fathi and
Amos H.C. Ng
International Journal of Production Research, 2021, vol. 59, issue 2, 598-616
Abstract:
Decentralised in-house logistics areas, known as supermarkets, are widely used in the manufacturing industry for parts feeding to assembly lines. In contrary to the literature and inspired by observation in a real case, this study relaxes the assumption of using identical transport vehicles when deciding on the supermarkets’ location by considering the availability of different vehicles. In this regard, this study deals with the integrated supermarket location and transport vehicles selection problems (SLTVSP). A mixed-integer programming (MIP) model of the problem is developed. Due to the complexity of the problem, a hybrid genetic algorithm (GA) with variable neighborhood search (GA-VNS) is also proposed to address large-sized problems. The performance of GA-VNS is compared against the MIP, the basic GA, and simulated annealing (SA) algorithm. The computational results from the real case and a set of generated test problems show that GA-VNS provides a very good approximation of the MIP solutions at a much shorter computational time while outperforming the other compared algorithms. The analysis of the results reveals that it is beneficial to apply different transport vehicles rather than identical vehicles for SLTVSP.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1701207 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:2:p:598-616
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1701207
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().