Value of data in multi-level supply chain decisions: a case study in the Dutch floriculture sector
Nguyen Quoc Viet,
Behzad Behdani,
Jacqueline Bloemhof-Ruwaard and
Kai Hoberg
International Journal of Production Research, 2021, vol. 59, issue 5, 1368-1385
Abstract:
While many supply chain decisions could take advantage of big data, firms struggle with investments into supply chain analytics since they are not able to assess the application areas and benefits of these initiatives. In this paper, we provide a multi-level perspective to assess the value of supply chain data. We develop a framework that highlights the connections between data characteristics and supply chain decisions with different time horizons (i.e. short- or long-term) as well as different supply chain levels (i.e. individual-firm level or supply-chain level). As data gets more complex in one or more of the 4 V dimensions (i.e. volume, variety, velocity, veracity), firms must assess how to best take advantage of the opportunities offered. We use the Dutch floriculture sector as a case study for our framework in which we highlight four data analytics applications to improve logistics processes. In the applications, we demonstrate how the data is used to support the decisions at different time horizons and supply-chain levels. We find that each of the big data’s Vs is required differently according to the decisions’ characteristics. Based on the findings, applications in other industries and promising directions for future research are discussed.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1821116 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:5:p:1368-1385
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2020.1821116
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().