Strategic global supply chain network design – how decision analysis combining MILP and AHP on a Pareto front can improve decision-making
Juri Reich,
Aseem Kinra,
Herbert Kotzab and
Xavier Brusset
International Journal of Production Research, 2021, vol. 59, issue 5, 1557-1572
Abstract:
Integrating a broad range of information types and finding trade-offs between conflicting goals is a challenge in global supply chain network design (GSCND). Effective decision support systems (DSS) should be user-friendly, provide transparency, and support human judgement. There is a wide range of optimisation models that aim to improve the outcome of network design decisions. However, their practical performance often remains unknown, as their implementation into the managerial decision process is largely neglected. Such theory-driven models usually focus on single aspects of the decision, without being able to accommodate the practical problem comprehensively. We employ the CIMO approach to resolve the issue and contribute by showing how an integration involving these methods can be useful for managers once the proper knowledge transfer has been effectuated. An innovative decision support framework, which combines mixed-integer linear programming, the Analytical Hierarchy Process, and the Pareto front is created and analysed during a case study in the med-tech industry. Results show that the framework accommodates managerial experience, integrates qualitative as well as quantitative criteria, and provides transparency over the entire range of efficient solutions. The framework and application results contribute towards the development of more flexible and easy-to-use decision support systems for GSCND.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1847341 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:5:p:1557-1572
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2020.1847341
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().