A blockchain-based evaluation approach for customer delivery satisfaction in sustainable urban logistics
Zonggui Tian,
Ray Y. Zhong,
Ali Vatankhah Barenji,
Y. T. Wang,
Zhi Li and
Yiming Rong
International Journal of Production Research, 2021, vol. 59, issue 7, 2229-2249
Abstract:
The rapid development of urbanisation and the ever-changing consumers’ demands are constantly changing the urban logistics industry, imposing challenges on logistics service providers to improve customer satisfaction which is one of the indicators for the sustainability of urban logistics. Existing customer satisfaction evaluations are based on a questionnaire survey, which is time-consuming and labour intensive. Moreover, the logistics data are confidential and can only be accessed by the stakeholders in existing logistics models, causing the problem of information non-transparency among logistics enterprises and the third authorities like banks and governments, which may hinder the sustainable development of urban logistics. In this paper, we propose a blockchain-based evaluation approach for customer satisfaction in the context of urban logistics. Four criteria affecting customer satisfaction in urban logistics are identified. A machine learning algorithm Long Short-Term Memory (LSTM) is adopted to predict customer satisfaction in the future period. The implementation is demonstrated to illustrate the proposed approach. A smart contract is designed for compensation and/or refund to customers when their satisfaction with the delivery services is at a low level.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1809733 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:7:p:2229-2249
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2020.1809733
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().