A data-driven business intelligence system for large-scale semi-automated logistics facilities
Chenhao Zhou,
Aloisius Stephen,
Xinhu Cao and
Shuhong Wang
International Journal of Production Research, 2021, vol. 59, issue 8, 2250-2268
Abstract:
With the proliferation of e-commerce, the regional hub of a large-scale logistics company is required to sort and load a large number of packages into different delivery vehicles by dawn and deliver them to customers by noon on a daily basis. The efficiency of the sorting operation is thus a competitive advantage which directly impacts the company's service level. In this study, a data-driven business intelligence system for the semi-automated sorting facility is proposed for real-world implementation. To determine the cargo handling sequence, an information-based approach with a multi-criteria index function is developed. Then a simulation-based optimisation framework, which integrates a multi-objective search algorithm with a simulation model, is employed to fine-tune the parameters of the index function to perform optimally. The results of the numerical experiment show that the proposed technique is able to reduce 20% of the sorting operation duration, which equals a reduction of about 3600 man-hours per year. The study is a good example of applying emerging technologies in the logistics industry.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1727048 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:8:p:2250-2268
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2020.1727048
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().