Workload Control order release in general and pure flow shops with limited buffer size induced blocking: an assessment by simulation
Matthias Thürer,
Lin Ma and
Mark Stevenson
International Journal of Production Research, 2021, vol. 59, issue 8, 2558-2569
Abstract:
Most manufacturing shops in practice have limited physical space in front of each workstation, due, for example, to physical, economical or operational constraints. As a result, a job may cause blocking because it has to remain at a given station after an operation has been completed until space in front of the next station in its routing becomes available. Despite this practical reality, the Workload Control literature typically assumes infinite buffer limits and therefore neglects the impact of blocking. Using simulation, we highlight the direct, detrimental impact of blocking in both the pure and general flow shop. Workload Control order release dampens the effect of blocking and improves overall performance. This makes Workload Control order release even more important in the context of shops with blocking or physical space constraints. Further analysis reveals that the impact of blocking is less pronounced in the pure flow shop given its directed routing. Finally, most of the blocking that occurs is because jobs cannot enter the shop, i.e. there is no space in front of the gateway station. This re-emphasises the close relationship between blocking and release methods that limit the workload, and it highlights the importance of workload balancing.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1735667 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:8:p:2558-2569
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2020.1735667
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().