A multi-skilled workforce optimisation in maintenance logistics networks by multi-thread simulated annealing algorithms
Hasan Hüseyin Turan,
Fuat Kosanoglu and
Mahir Atmis
International Journal of Production Research, 2021, vol. 59, issue 9, 2624-2646
Abstract:
The sustainability of service and manufacturing operations rely heavily on the availability of equipment and assets. High availability of assets can be achieved with effective maintenance strategies. In this direction, we study a multi-skilled workforce planning problem to establish a resilient maintenance service network for high-value assets. We improve the efficiency of the maintenance network by optimising the workforce capacity in repair shops and achieving workforce heterogeneity by cross-training. As a solution strategy, we develop a two-stage iterative heuristic algorithm. At the first stage, the set of all feasible cross-training policies is effectively and systematically searched via a state-of-art multi-thread simulated annealing (MTSA) metaheuristic to find a policy(ies) that achieves the minimum cost. Further, the developed MTSA algorithm is enhanced with the multi-neighbourhood feature to escape from local optimality and implemented via parallel programming techniques. In the second stage, workforce capacity and spare parts inventory levels are optimised for the cross-training policy found at the first stage by a queuing approximation and a greedy heuristic. The MTSA obtains the lowest cost in 91 cases out of 128 compared to genetic algorithm (GA), variable neighbourhood search (VNS), an improved single-thread simulated annealing algorithm (SA) and integer programming-based clustering (IPBC) algorithms.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1735665 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:9:p:2624-2646
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2020.1735665
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().