Robust parameter design based on Gaussian process with model uncertainty
Zebiao Feng,
Jianjun Wang,
Yizhong Ma and
Yiliu Tu
International Journal of Production Research, 2021, vol. 59, issue 9, 2772-2788
Abstract:
In robust parameter design, it is common to use computer models to simulate the relationships between input variables and output responses. However, for the contaminated experimental data, the model uncertainty between computer models and actual physical systems will seriously impair the robustness of the optimal input settings. In this paper, we propose a new weighted robust design approach concerning the model uncertainty from outliers based on the robust Gaussian process model with a Student-t likelihood (StGP). Firstly, to reduce the impact of outliers on the output means and variances, the StGP modelling technique is adopted to estimate the relationship models for contaminated data. Secondly, the Gibbs sampling technique is employed to estimate model parameters for better mixing and convergence. Finally, an optimisation scheme integrating the quality loss function and confidence interval analysis approach is built to find the feasible optimisation solution. Meanwhile, the hypersphere decomposition method and data-driven method are applied to determine the relative weights of objective functions. Two examples are used to demonstrate the effectiveness of the proposed approach. The comparison results show that the proposed approach can achieve better performance than other approaches by considering the model uncertainty from outliers.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1740344 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:9:p:2772-2788
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2020.1740344
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().