A stochastic programming approach for the disassembly line balancing with hazardous task failures
Eda Goksoy Kalaycilar,
Sakine Batun and
Meral Azizoğlu
International Journal of Production Research, 2022, vol. 60, issue 10, 3237-3262
Abstract:
We consider a partial disassembly line balancing problem with hazardous tasks whose successful completions are uncertain. When any hazardous task fails, it causes damages of the tasks on the workstation that it is performed on and all remaining tasks to be performed in the succeeding workstations. We attribute probabilities for the successful completion and failure of the hazardous tasks and aim to maximise the total expected net revenue. We formulate the problem as a two-stage stochastic mixed-integer programme where the assignment of the tasks to the workstations is decided in the first-stage, before the resolution of the uncertainty. We give the formulation for one, two and three hazardous tasks, and then extend to the arbitrary number of hazardous tasks. Our numerical results reveal that proposed stochastic programming models return satisfactory performance and can solve instances with up to 73 tasks very quickly. We observe that the number of tasks, number of hazardous tasks and success probabilities are the most significant parameters that affect the performance. We quantify the value of capturing uncertainty using the expected objective values attained by the solution of the stochastic model and that of the expected value model, and obtain very satisfactory results.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2021.1916119 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:60:y:2022:i:10:p:3237-3262
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2021.1916119
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().