Data-driven cloud simulation architecture for automated flexible production lines: application in real smart factories
Dan Luo,
Zailin Guan,
Cong He,
Yeming Gong and
Lei Yue
International Journal of Production Research, 2022, vol. 60, issue 12, 3751-3773
Abstract:
In recent years, more manufacturing enterprises are building automated flexible production lines (AFPLs) to satisfy the dynamic and diversified demand. Currently, static planning methods can hardly meet the requirements of the dynamic resource allocation for AFPLs. The technologies of the digital twin can help solve dynamic problems. Therefore, we propose a data-driven cloud simulation architecture for AFPLs in smart factories. First, we design a cloud simulation platform as the architecture foundation. Second, we use the data-driven modelling and simulation method to achieve automated modelling. Third, we implement the system on the cloud using Java, MySQL, and the Anylogic platform, and verify the efficiency of the proposed method by experiments in the real workshop of a 3C (Computer, Communication, Consumer electronics) company. The experimental results show the proposed architecture can support the real-time resource allocation decisions to maximise the throughput in AFPLs. This paper makes contributions by proposing an architecture realising automatic modelling and data-driven simulation first in the cloud simulation environment, and filling the gap of dynamic resource allocation in the research of AFPLs.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2021.1931977 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:60:y:2022:i:12:p:3751-3773
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2021.1931977
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().