EconPapers    
Economics at your fingertips  
 

Deep reinforcement learning for dynamic scheduling of a flexible job shop

Renke Liu, Rajesh Piplani and Carlos Toro

International Journal of Production Research, 2022, vol. 60, issue 13, 4049-4069

Abstract: The ability to handle unpredictable dynamic events is becoming more important in pursuing agile and flexible production scheduling. At the same time, the cyber-physical convergence in production system creates massive amounts of industrial data that needs to be mined and analysed in real-time. To facilitate such real-time control, this research proposes a hierarchical and distributed architecture to solve the dynamic flexible job shop scheduling problem. Double Deep Q-Network algorithm is used to train the scheduling agents, to capture the relationship between production information and scheduling objectives, and make real-time scheduling decisions for a flexible job shop with constant job arrivals. Specialised state and action representations are proposed to handle the variable specification of the problem in dynamic scheduling. Additionally, a surrogate reward-shaping technique to improve learning efficiency and scheduling effectiveness is developed. A simulation study is carried out to validate the performance of the proposed approach under different scenarios. Numerical results show that not only does the proposed approach deliver superior performance as compared to existing scheduling strategies, its advantages persist even if the manufacturing system configuration changes.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2022.2058432 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:60:y:2022:i:13:p:4049-4069

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2022.2058432

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:60:y:2022:i:13:p:4049-4069