EconPapers    
Economics at your fingertips  
 

Scheduling of autonomous mobile robots with conflict-free routes utilising contextual-bandit-based local search

Sungbum Jun, Chul Hun Choi and Seokcheon Lee

International Journal of Production Research, 2022, vol. 60, issue 13, 4090-4116

Abstract: As autonomous robot and sensor technologies have advanced, utilisation of autonomous mobile robots (AMRs) in material handling has grown quickly, owing especially to their scalability and versatility compared with automated guided vehicles (AGVs). In order to take full advantage of AMRs, in this paper, we address an AMR scheduling and routing problem by dividing the entire problem into three sub-problems: path finding, vehicle routing, and conflict resolution. We first discuss the previous literature on characteristics of each sub-problem. We then present a comprehensive framework for minimising total tardiness of transportation requests with consideration of conflicts between routes. First, the shortest paths between all locations are calculated with A*. Based on the shortest paths, for vehicle routing, we propose a new local search algorithm called COntextual-Bandit-based Adaptive Local search with Tree-based regression (COBALT), which utilises the contextual bandit to select the best operator in consideration of contexts. After routing of AMRs, an agent-based model with states and protocols resolves collisions and deadlocks in a decentralised way. The results indicate that the proposed framework can improve the performance of AMR scheduling for conflict-free routes and that, especially for vehicle routing, COBALT outperforms the other algorithms in terms of average total tardiness.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2022.2063085 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:60:y:2022:i:13:p:4090-4116

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2022.2063085

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:60:y:2022:i:13:p:4090-4116