Robust monitoring of stochastic textured surfaces
Anh Tuan Bui and
Daniel W. Apley
International Journal of Production Research, 2022, vol. 60, issue 16, 5071-5086
Abstract:
Stochastic textured surfaces (STSs) do not have well-defined features, and their quality characteristics are reflected through the stochastic nature of their surface textures. Monitoring general global changes in the stochastic nature of STSs is a relatively new, yet important problem. The limited literature for solving this problem has not considered the common situation in which the normal, in-control STS data are subject to structured surface-to-surface variation in their stochastic nature, due to the challenging nature of this problem. In this paper, we propose a dissimilarity-based multivariate control charting approach for monitoring general global changes in STSs in the presence of such structured in-control variation. Our approach is novel in that it quantifies the level of abnormality from multiple ‘spanning points’, instead of a single reference as in prior work. The spanning points are selected via dissimilarity-based manifold learning and space filling sampling methods. We test our approach with simulated and real textile examples and demonstrate its superior robustness to the structured in-control variation. Our approach has potential to provide a general control charting framework for any applications involving complex data structures other than STS data.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2021.1949642 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:60:y:2022:i:16:p:5071-5086
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2021.1949642
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().