EconPapers    
Economics at your fingertips  
 

One-dimensional residual convolutional auto-encoder for fault detection in complex industrial processes

Jianbo Yu and Xing Liu

International Journal of Production Research, 2022, vol. 60, issue 18, 5655-5674

Abstract: Fault detection and diagnosis have always been the key techniques for safe and reliable operation of industrial processes. However, the high dimension and noise of process variables have brought great challenges to the fault detection model. In recent years, due to the powerful feature extraction ability, deep learning has been widely applied in process fault detection and diagnosis. However, these deep neural networks (DNNs) often need a large amount of label data for supervised training, or show poor performance in learning features under unsupervised-learning condition. This paper proposes a new DNN model, a one-dimension residual convolutional auto-encoder (1DRCAE), where unsupervised learning is used to extract representative features from complex industrial processes. 1DRCAE effectively integrates the one-dimensional convolutional kernel with an auto-encoder and is embedded residual learning block for effective feature extraction from one-dimensional data. The two statistics and squared prediction error are generated in the feature space and residual space of 1DRCAE, respectively. Finally, the feasibility and superiority of 1DRCAE are verified on a simulation process, Tennessee Eastman process, Fed-batch fermentation penicillin process, and a real-life case. The convolutional auto-encoder technique provides a new way for feature learning and fault detection on complex industrial processes.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2021.1968061 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:60:y:2022:i:18:p:5655-5674

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2021.1968061

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:60:y:2022:i:18:p:5655-5674