Mitigation strategies against supply disruption risk: a case study at the Ford Motor Company
Ece Sanci,
Mark S. Daskin,
Young-Chae Hong,
Steve Roesch and
Don Zhang
International Journal of Production Research, 2022, vol. 60, issue 19, 5956-5976
Abstract:
Supply chains are exposed to different risks, which can be mitigated by various strategies based on the characteristics and needs of companies. In collaboration with Ford, we develop a decision support framework to choose the best mitigation strategy against supply disruption risk, especially for companies operating with a small supplier base and low inventory levels. Our framework is based on a multistage stochastic programming model which incorporates a variety of plausible strategies, including reserving backup capacity from the primary supplier, reserving capacity from a secondary supplier, and holding backup inventory. We reflect disruption risk into the framework through decision makers’ input on the time to recover and the disruption probability. Our results demonstrate that relying on the strategy which is optimal when there is no disruption risk can increase the expected total cost substantially in the presence of disruption risk. However, this increase can be reduced significantly by investing in the mitigation strategy recommended by our framework. Our results also show that this framework removes the burden of estimating the time to recover and the disruption probability precisely since there is often a small loss associated with using another strategy that is optimal in the neighbourhood of the estimated values.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2021.1975058 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:60:y:2022:i:19:p:5956-5976
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2021.1975058
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().