EconPapers    
Economics at your fingertips  
 

A hybrid ensemble learning-based prediction model to minimise delay in air cargo transport using bagging and stacking

Rosalin Sahoo, Ajit Kumar Pasayat, Bhaskar Bhowmick, Kiran Fernandes and Manoj Kumar Tiwari

International Journal of Production Research, 2022, vol. 60, issue 2, 644-660

Abstract: Manufacturing productivity is inextricably linked to air freight handling for the global delivery of finished and semi-finished goods. In this article, our focus is to capture the transport risk associated with air freight which is the difference between the actual and the planned time of arrival of a shipment. To mitigate the time-related uncertainties, it is essential to predict the delays with adequate precision. Initially, data from a case study in the transportation and logistics sector were pre-processed and divided into categories based on the duration of the delays in various legs. Existing datasets are transformed into a series of features, followed by extracting important features using a decision tree-based algorithm. To predict the delay with maximum accuracy, we used an improved hybrid ensemble learning-based prediction model with bagging and stacking enabled by characteristics like time, flight schedule, and transport legs. We also calculated the dependency of accuracy on the point in time during business process execution is examined while predicting. Our results show all predictive methods consistently have a precision of at least 70 per cent, provided a lead-time of half the duration of the process. Consistently, the proposed model provides strategic and sustainable insights to decision-makers for cargo handling.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2021.2013563 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:60:y:2022:i:2:p:644-660

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2021.2013563

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:60:y:2022:i:2:p:644-660