EconPapers    
Economics at your fingertips  
 

Improved multi-fidelity simulation-based optimisation: application in a digital twin shop floor

Zhengmin Zhang, Zailin Guan, Yeming Gong, Dan Luo and Lei Yue

International Journal of Production Research, 2022, vol. 60, issue 3, 1016-1035

Abstract: In recent years, the literature has paid considerable attention to digital twin technology for the implementation of Industry 4.0 and intelligent manufacturing. Most of the literature argues that simulation models are a key platform for digital twins and considers discrete-event simulation to be a suitable method to model real dynamic manufacturing systems. However, the discrete-event simulation of complex manufacturing systems is a time-consuming process. Therefore, it is difficult to deal with the large-scale discrete optimisation problems in digital twin shop floors. To bridge this research gap, we propose an improved multi-fidelity simulation-based optimisation method based on multi-fidelity optimisation with ordinal transformation and optimal sampling (MO2TOS) in the current research. The proposed method embeds heuristic algorithms to accelerate the solution space search efficiency in MO2TOS. Moreover, we develop an improved multi-fidelity simulation-based optimisation system by integrating the proposed method with discrete-event simulation tools and apply this system to a digital twin-based aircraft parts production workshop. Based on this digital twin shop floor, we conduct different production planning experiments to evaluate the performance of the proposed method. The experimental results demonstrate that the proposed improved multi-fidelity simulation-based optimisation method is well-applied in solving large-scale problems and outperforms other simulation-based optimisation methods.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1849846 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:60:y:2022:i:3:p:1016-1035

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2020.1849846

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-04-20
Handle: RePEc:taf:tprsxx:v:60:y:2022:i:3:p:1016-1035