EconPapers    
Economics at your fingertips  
 

A robust service composition and optimal selection method for cloud manufacturing

Bo Yang, Shilong Wang, Shi Li and Tianguo Jin

International Journal of Production Research, 2022, vol. 60, issue 4, 1134-1152

Abstract: During the process of cloud manufacturing, various uncertainties in the real world could have a significant impact on the smooth execution of task, and could render the planned composite manufacturing service (CMS) inefficient or even ineffective. Therefore, this paper proposes an optimal selection method to enhance the robustness of CMS during the planning stage. Firstly, the structure of robust CMS is proposed by arranging the preferred and alternative services for each subtask, and a robust service composition and optimal selection (rSCOS) model of cloud manufacturing is constructed by defining the expected Quality of Service. Then, the gABC-GWO (guiding artificial bee colony – grey wolf optimisation) algorithm is proposed to solve the rSCOS model efficiently, in which three improvement strategies for ABC algorithm are designed according to the characteristics of GWO. Finally, two experiments are implemented and the results show that QoS of the preferred scheme of robust CMS is approximately 1.29% lower than that of CMS on average, while its robustness is improved by 1.81% and 13.14% depending on the two robustness indexes. Compared with other commonly-used intelligence optimisation algorithms, gABC-GWO algorithm possesses better search performance without significantly increasing time consumption, which makes it more suitable for solving rSOCS problems.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1852481 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:60:y:2022:i:4:p:1134-1152

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2020.1852481

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:60:y:2022:i:4:p:1134-1152