EconPapers    
Economics at your fingertips  
 

Performance evaluation of scheduling policies for the dynamic and stochastic resource-constrained multi-project scheduling problem

Ugur Satic, Peter Jacko and Christopher Kirkbride

International Journal of Production Research, 2022, vol. 60, issue 4, 1411-1423

Abstract: In this study, we consider the dynamic and stochastic resource-constrained multi-project scheduling problem where projects generate rewards at their completion, completions later than a due date cause tardiness costs, task duration is uncertain, and new projects arrive randomly during the ongoing project execution both of which disturb the existing project scheduling plan. We model this problem as a discrete-time Markov decision process and explore the performance and computational limitations of solving the problem by dynamic programming. We run and compare five different solution approaches, which are: a dynamic programming algorithm to determine a policy that maximises the time-average profit, a genetic algorithm and an optimal reactive baseline algorithm, both generate a schedule to maximise the total profit of ongoing projects, a rule-based algorithm which prioritises processing of tasks with the highest processing durations, and a worst decision algorithm to seek a non-idling policy that minimises the time-average profit. The performance of the optimal reactive baseline algorithm is the closest to the optimal policies of the dynamic programming algorithm, but its results are suboptimal, up to 37.6%. Alternative scheduling algorithms are close to optimal with low project arrival probability but quickly deteriorate their performance as the probability increases.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1857450 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:60:y:2022:i:4:p:1411-1423

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2020.1857450

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:60:y:2022:i:4:p:1411-1423