EconPapers    
Economics at your fingertips  
 

Integrated stochastic disassembly line balancing and planning problem with machine specificity

Junkai He, Feng Chu, Alexandre Dolgui, Feifeng Zheng and Ming Liu

International Journal of Production Research, 2022, vol. 60, issue 5, 1688-1708

Abstract: The disassembly is a fundamental basis in converting End-of-Life (EOL) products into useful components. Related research becomes popular recently due to the increasing awareness of environmental protection and energy conservation. Yet, there are many opening questions needed to be investigated, especially the efficient coordination of different-level decisions under uncertainty is a big challenge. In this paper, a novel integrated stochastic disassembly line balancing and planning problem is studied to minimise the system cost, where component yield ratios and demands are assumed to be uncertain. In this work, machine specificities are considered for task processing, such as price, ability, and capacity. For the problem, a two-stage non-linear stochastic programming model is first constructed. Then, it is further transformed into a linear formulation. Based on problem property analysis, a valid inequality is proposed to reduce the search space of optimal solutions. Finally, a sample average approximation (SAA) and an L-shaped algorithm are adopted to solve the problem. Numerical experiments on randomly generated instances demonstrate that the valid inequality can save around 11% of average computation time, and the L-shaped algorithm can save around 64% of average computation time compared with the SAA algorithm without a big sacrifice of the solution quality.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1868600 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:60:y:2022:i:5:p:1688-1708

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2020.1868600

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:60:y:2022:i:5:p:1688-1708